کاوش موضوع یادگیری عمیق
صفحه اصلی
یادگیری عمیق
یادگیری عمیق، یادگیری ژرف یا ژرفآموزی (به انگلیسی: Deep learning) (به بیانی دیگر: یادگیری ژرف ماشین، یادگیری ساختار ژرف یا یادگیری سلسله مراتبی) یک زیر شاخه از یادگیری ماشین و بر مبنای مجموعهای از الگوریتمها است که در تلاشند تا مفاهیم انتزاعی سطح بالا در دادگان را مدل کنند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیرخطی اند، مدل میکنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگیها در لایههای مدل است.
به قولی دیگر «یادگیری عمیق» یک نوع «یادگیری ماشین» به همراه شبکههای عصبی چندلایه است که با دقتی فزاینده الگوهای موجود در دادهها کشف کرده و به همینخاطر میتواند علائق کاربر را بشناسد، اشیا را شناسایی کرده و زبانها را بفهمد.
یک نمونه آموزشی (برای نمونه: تصویر یک گربه) میتواند به صورتهای گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلیتر به شکل یک مجموعه از زیرشکلهای کوچکتر (نظیر اعضای صورت گربه) مدلسازی شود. برخی از این روشهای مدلسازی سبب ساده شدن فرایند یادگیری ماشین (برای نمونه: تشخیص تصویر گربه) میشوند.
در یادگیری عمیق امید به جایگزینی استخراج این ویژگیهای تصویر به دست بشر (مانند اعضای گربه) با روشهای کاملخودکار بینظارت و نیمهنظارتی وجود دارد.
انگیزهٔ نخستین در به وجود آمدن این ساختار یادگیری از راه بررسی ساختار عصبی در مغز انسان الهام گرفته شدهاست که در آن یاختههای عصبی با فرستادن پیام به یکدیگر درک را امکانپذیر میکنند.
بسته به فرضهای گوناگون در مورد نحوهٔ اتصال این یاختههای عصبی، مدلها و ساختارهای مختلفی در این حوزه پیشنهاد و بررسی شدهاند، هرچند که این مدلها به صورت طبیعی در مغز انسان وجود ندارد و مغز انسان پیچیدگیهای بیشتری دارد. این مدلها نظیر شبکه عصبی عمیق، شبکه عصبی همگشتی، شبکه باور عمیق و چندین نمونه دیگر؛ پیشرفتهای خوبی را در حوزههای پردازش زبانهای طبیعی و پردازش تصویر ایجاد کردهاند.
در حقیقت عبارت یادگیری عمیق، بررسی روشهای تازه برای شبکه عصبی مصنوعی است.... بیشتر در ویکی پدیا